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Abstract In this paper we develop the large deviations principle and a rigorous math-
ematical framework for asymptotically efficient importance sampling schemes for
general, fully dependent systems of stochastic differential equations of slow and fast
motion with small noise in the slow component. We assume periodicity with respect
to the fast component. Depending on the interaction of the fast scale with the small-
ness of the noise, we get different behavior. We examine how one range of interac-
tion differs from the other one both for the large deviations and for the importance
sampling. We use the large deviations results to identify asymptotically optimal im-
portance sampling schemes in each case. Standard Monte Carlo schemes perform
poorly in the small noise limit. In the presence of multiscale aspects one faces addi-
tional difficulties and straightforward adaptation of importance sampling schemes for
standard small noise diffusions will not produce efficient schemes. It turns out that
one has to consider the so called cell problem from the homogenization theory for
Hamilton-Jacobi-Bellman equations in order to guarantee asymptotic optimality. We
use stochastic control arguments.
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1 Introduction

Let us consider the m + (d — m) dimensional process (X€¢, Y€) = {(X€(s), Y¢(s)),
0 <s < T} satisfying the system of stochastic differential equations (SDE’s)

dX¢(s) = [gb(xf(s), YE(s)) + (X (). Ye(s))] ds

+ Veo (X (5), Y(8)) dW(s),

1
dY<(s) = 3 |:§f(X€(s), Y€(s)) + g(X(s), Y€ (s))j| ds

Je
S

+ 02X (), Y(5)) dB(s)],

(1.1

+ Y= [11(X(), Y(5)) dW(s)

X€(0) = xo, Y€(0) = yo

where 6 = 8(e) | 0 as € | 0 and (W(s), B(s)) is a 2«x-dimensional standard
Wiener process. The functions b(x, y),c(x,y),o(x,y), f(x,y),g(x,y), 1(x,y)
and 12(x, y) are assumed to be sufficiently smooth (see Condition 2.1) and periodic
with period X in every direction with respect to the second variable.

One can interpret the system of (1.1) as a system of slow and fast motion with
X€ playing the role of the slow motion and Y€ playing the role of the fast motion.
The goal of this paper is to provide a large deviations analysis of (1.1) that allows to
rigorously develop the importance sampling theory for estimation of functionals such
as

0(e) = E[e‘éh(XG(T))lXG (0) = xo, Y¢(0) = yo]. (1.2)

Importance sampling is a variance reduction technique in Monte Carlo simulation.
As it is well known, standard Monte Carlo sampling techniques perform very poorly
in that the relative errors under a fixed computational effort grow rapidly as the event
becomes more and more rare. Estimating rare event probabilities in the context of
slow-fast systems presents extra difficulties due to the underlying fast motion and its
interaction with the intensity of the noise €.

Depending on the order that €, go to zero, we have three different regimes of
interaction:

o) Regime 1,
limS =1y e 00 Regime?2, (1.3)
€l0§ .

0 Regime 3.

If § goes to zero faster than ¢ (Regime 1) then homogenization occurs first,
whereas if € goes to zero faster than § (Regime 3) then large deviations theory tells
how quickly (1.1) converges to the averaged deterministic ODE given by setting €
equal.to.zero. If the two parameters.go.to.zero together then one has an intermediate
situation (Regime 2).
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The study of rare events in the multiscale context is a difficult problem due to
the presence of the underlying fast motion. The first necessary step is to develop the
associated large deviations theory. Using weak convergence arguments the authors
in [12] prove the large deviations principle for the special case f =b,g=c, 11 =0
and 7 = 0. We extend the results of [12] to the current general setup. Then, using
the large deviation results and stochastic control arguments we construct asymptot-
ically optimal importance sampling schemes with rigorous bounds on performance.
The construction is based on subsolutions for an associated Hamilton-Jacobi-Bellman
(HJB) equation as in [13, 15]. The situation here is complicated due to the presence
of the fast motion. It turns out that changes of measure that are implied by the ho-
mogenized system do not lead to efficient importance sampling schemes. The stan-
dard arguments have to be modified taking into account the solution to the related
“cell problem” which is different for each regime. This is also tightly related to the
homogenization theory for HIB equations. A control in full feedback form, i.e., a
function of both the slow variable X€¢ and the fast variable Y€, is used to construct
dynamic importance sampling schemes with precise asymptotic performance bounds.
The control involves both the solution to the appropriate homogenized HIB equation
and to its corresponding cell problem.

The novelty of this work lies in developing (a) the large deviations principle and
(b) a general and rigorous mathematical framework for the study of importance sam-
pling schemes for systems of slow-fast motion as in (1.1) for all three regimes of
interaction, (1.3). Multiscale stochastic control problems and related large deviations
problems have been studied elsewhere as well under various assumptions and depen-
dencies of the coefficients of the system on the slow and fast motion, see [3, 7, 12, 18,
19, 24, 25, 28, 30, 33, 34]. The papers [18, 19, 25, 33, 34] address the large deviations
principle for Regime 2 for special cases of dependence of the coefficients on (x, y).
With the exception of [12, 25], they express it through a Legendre-Fenchel transform
of the limit of the normalized logarithm of an exponential moment or of the first
eigenvalue of an associated operator. Here we provide an explicit characterization of
the action functional. Also, the large deviations arguments in the aforementioned pa-
pers do not cover the full nonlinear case that we study here and do not seem to provide
insights into how to construct asymptotically efficient importance sampling schemes.
Some related importance sampling results on this problem have been recently ob-
tained in [13]. There the authors study the special case of f =b, g =c, 71 =0 and
7o = 0 for Regime 1 only and provide simulation studies for that particular case as
well. It is also demonstrated there that straightforward adaptation of importance sam-
pling schemes for standard diffusion processes (without the multiscale aspect) will
have poor results in the multiscale setting. This translates in that one needs to con-
sider the solution to the cell problem in problems with multiple scales in order to
guarantee good asymptotic performance. The treatment of the general case, that is
the content of the current paper, requires additional considerations. In particular, the
identification of the optimal control and of the associated subsolutions and cell prob-
lems are more involved here even for Regime 1. The case of Regimes 2 and 3 is
studied in this paper for the first time. This work is closely related to the homoge-
nization theory of HJB equations, e.g., [1, 2,9, 17, 21, 27], see Sect. 5.

We.note here.that one.may. possibly.be able to relax the periodicity assumption
both for the large deviations and for the importance sampling. In particular, in the
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case of Regime 1 using the results and methodology of [12, 30] and of the present
paper, we can probably prove an analogous result when the fast variable takes values
in R4~ instead of the torus. Of course, one would need to impose the appropriate
recurrence conditions for the fast motion. In the case of Regime 2, the extension to
the whole space with full dependence of the coefficients on (x, y) is more involved.
However, it seems plausible that the methods of the current paper can be combined
with those of [5, 12, 22] to weaken the periodicity assumption for Regime 2 as well.
This will be addressed elsewhere.

The need to simulate rare events occurs in many application areas including
telecommunication, finance, insurance and chemistry. We present some examples
in Sect. 6. A model of interest in chemical physics and chemistry is the first order
Langevin equation in a rough potential, e.g. [14, 26, 29, 32, 35]. This is a special case
of the system (1.1) with f =b=-VQ(y), g =c=—-VV(x), 1y = 0 = constant
and 7o = 0 and is discussed in Sect. 6.1. Another example, discussed in Sect. 6.2,
is related to short time asymptotics of a process that depends on another fast mean
reverting process.

The rest of the paper is organized as follows. In Sect. 2 we introduce necessary
notation and our assumptions. Section 3 is devoted to the related large deviations
theory. In Sect. 4 we develop the importance sampling theory for all three possible
regimes of interaction that guarantees asymptotic optimality. In Sect. 5 we discuss
the connection of the importance sampling theory with the homogenization of HIB
equations. We conclude with Sect. 6 where we examine how our results look like in
some special cases of interest.

2 Notation and Assumptions

In this section we establish some notation and lay out our main assumptions. Let
us assume a filtered probability space (£2, §,P) equipped with a filtration §; that
satisfies the usual conditions, namely, §; is right continuous and §( contains all P-
negligible sets.

The main assumption for the coefficients of (1.1) is as follows.

Condition 2.1

(i) The functions b(x,y),c(x,y),o(x,y), f(x,y),8(x,y), ri(x,y) and w2(x,y)
are bounded in both variables and periodic with period X in the second vari-
able in each direction. We additionally assume that they are C'(R?~™) in y and
C2(R™) in x with all partial derivatives continuous and globally bounded in x
and y.

(ii) The diffusion matrices oo’ and rlrlT + ‘1727,'2T are uniformly nondegenerate.

Under Condition 2.1 the system (1.1) has a unique strong solution. The smooth-
ness.assumptions.are stronger. than_necessary, but they guarantee smoothness and
boundedness of the associated cell problems that will appear in the development of
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the importance sampling theory. For notational convenience we define the opera-
tor - : -, where for two matrices A = [a;;], B = [b;;]

A: Bizaijbij.
iJ

Let Y = T9™ be the (d — m)-dimensional torus. This is the state space of the
fast motion. For the purposes of consistency with the related literature we use similar
notation as in [12, 13] with the appropriate modifications in order to cover the more
general set-up that we treat here.

Under Regime 1, we also impose the following condition.

Condition 2.2 Let F € C? (V; R) and consider the operator

1
LIF() = f(x,y)-VyF(y) + E(nr{ + 117 ) (x,¥) : Vy Vy F(y)

equipped with periodic boundary conditions in y. Under Regime 1, we assume the
centering condition (see [6]):

/ b(x,y) u(dylx) =0,
Y

where u(dy|x) is the unique invariant measure corresponding to the operator C}C.

Under Conditions 2.1 and 2.2, Theorem 3.3.4 in [6] guarantees that for each ¢ €
{1,...,m} there is a unique, twice differentiable, with all partial derivatives up to
second order bounded, A-periodic in each direction function x,(x, y) that satisfies
the cell problem:

£l y) = —be(x. y), /ymx,ym(dy|x>=0. @.1)

We write x = (X1,.--» Xm)-
Let us denote Z = R¥. This will be the space in which the control processes that
will appear in the next sections take values.

Definition 2.3 For (x, y, z1,22) € R™ X Y x Z x Z and for Regime i'= 1,2,3 de-
fined in (1.3) we define the operators L Fori=1,2welet D(L] ) = C2())

21,22,X°

and for i =3, D(L3 ) =C' (). For F € D(LL ) define

LLF() = [0, ) - VyF () + %(n o+ 0x])(ry) : Y,V FOy),
L2 FO) =[G y) +g.y) + 1i(x, )21 + 1a(x, ¥)z2] - Vy F(y)
+ y%(m{ + 0t )(x, ) : VyVy F(y),

X NFO) = [ ) a6z + . »z2] - Ve F ().
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Definition 2.4 For (x, y,z1,22) € R" x Y x Z x Z and for Regime i = 1,2, 3 de-
fined in (1.3) we define the functions A;(x, y, z1,22) :R” x YV x Z x Z — R™ by

0
rMx,y,21,22) = clx,y) + %(x, ngx,y)+ox,y)zi

dx
+ a(x, W (tix, )z + 12(x, y)z2),
AM(x,y,21,22) = yb(x,y) +c(x,y) +o(x,y)z1,
A3(x,y,21,22) = c(x,y) +o(x, y)z1,

where x = (x1, ..., xm) is defined by (2.1).

For a Polish space S, let P(S) be the space of probability measures on S. Next
we recall the notion of viability as defined in [12].

Definition 2.5 A pair (,P) e C([0, T]; R") x P(Z x Z x Y x [0, T']) will be called
viable with respect to (A, £) and write (1, P) € V), 1), if the following hold:

e The function 1, is absolutely continuous.

e The measure P is square integrable in the sense that | ZxZxVx[0.T] lz|I? x
P(dz1dzadyds) < oo.

e Forallr €[0, T]

1 =xo+/ rYs, y,z1,22)P(dz1dzadyds). (2.2)
ZxZxYx[0,t]

e Forallf € [0, T] and for every f € D(L)

t
/ / Lo o, fO)Pdz1dzadyds) =0. 2.3)
0 JEZxZxY

e Forallt €[0,T]
P(Z x ZxY x|0, t]) =1. 2.4

Notice that (2.4) implies that the last marginal of P is Lebesgue measure, and
hence P can be decomposed in the form P(dz| dzo dy dt) =P;(dz1dza dy) dt.

3 Large Deviations Principle

The authors in [12] establish the large deviations principle related to (1.1) in the
special case of f =b, g =c, 11 =0 and 7o = 0. We extend the results of [12] to the
current general setup. A uniform approach to the large deviations problem for (1.1)
is presented, allowing to essentially treat all three regimes with the same general
strategy,.even though the technical details. might be different from regime to regime.
Moreover, in the course of the proof of the large deviations lower bound, we need to
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construct a nearly optimal control that attains the large deviations bound. As we will
see in Sect. 4, this control can guide the construction of efficient importance sampling
for the estimation of quantities such as (1.2).

Essentially, in each regime, the action functional is given by the infimization of a
quadratic functional, where the infimum is determined by the averaging of an appro-
priate controlled version of the limiting slow motion with respect to the correspond-
ing fast motion. Both the limiting slow motion and the fast motion with respect to
which the averaging is being done, differ from regime to regime. This is related to
the notion of viability from Definition 2.5 where the viable pairs (A, £) are obtained
from Definitions 2.3 and 2.4 for each regime. What defers from the special case con-
sidered in [12] is the form of the appropriate viable pair in each case. We present this
characterization below.

In preparation for stating the main large deviations results, we recall the concept
of a Laplace principle.

Definition 3.1 Let {X€, ¢ > 0} be a family of random variables taking values in a
Polish space S and let I be a rate function on S. We say that {X€, € > 0} satisfies the
Laplace principle with rate function [ if for every bounded and continuous function
h:S5—R

h(X€)

161%1 € 1n]E|:exp{ H = xnelg[l (x) + h(x)]. 3.1

If the level sets of the rate function (equivalently action functional) are compact,
then the Laplace principle is equivalent to the corresponding large deviations princi-
ple with the same rate function (Theorems 2.2.1 and 2.2.3 in [11]).

The derivation of the large deviations and importance sampling results are based
on a variational representation for functionals of Wiener process derived in [8] that
allows to rewrite the prelimit left hand side of (3.1). Let Z(-) be a standard n-
dimensional Wiener process and F (-) a bounded and measurable real-valued function
define on the set of R"-valued continuous functions on [0, T']. By Theorem 3.1 in [§]
we have

T .
—logE[exp{—F(Z(-))}] = inf ]E|:1/ ||u(s)||2ds + F(Z(-) +/ u(s) ds)]
ueA 2 Jo 0
(3.2)

where A is the set of all §-progressively measurable n-dimensional processes u =
{u(s),0 < s < T} satisfying

T
E/ ||u(s)“2ds < 0Q.
0

In the present case, let Z(-) = (W(-), B(:)) and n = 2k. Under Condition 2.1, the
system. has (1.1) has.a unique strong solution. Therefore X€ and Y€ are measurable
functions of Z(-) = (W(-), B(:)). After setting F(Z(-)) = h(X€(-))/e and rescaling
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the controls by ﬁ we get the representation

—elnEy y, [exp{—h(f ) ”

1T _
= inf Exo,yo[—/ [ur )] + Uuz(s)||2]ds+h(xf)] 3.3)
ue A 2 Jo

where the pair (X€, Y€) is the unique strong solution to
dXE(s) = [%b()_(e (5), 7<(5)) + ¢(X(s). T¥(5)) + o (XE, Yf)ul(s):| ds
+ Ve (X(s), Y(5)) dW (s),

v € 1fe vE v E vE V€ v E €
ay (S)=—[—f(X (), Y(5)) + g (X (), Y()) + 11 (X (), Y(5))ui (s)
§L8 (3.4)

+ rz()_(e(s), Y€ (s))uz(s):| ds + %[‘L’] (}_(E (s), Ye(s)) dW(s)

+ 12(X(5), Y (9)) dB(s)],
X(0)=x0.  Y(0)=yo.

Therefore in order to derive the Laplace principle for {X€}, it is enough to study
the limit of the right hand side of the variational representation (3.3). The first step
in doing so is to consider the weak limit of the slow motion X€¢ of the controlled
couple (3.4). Due to the involved controls, it is convenient to introduce the following
occupation measure. Let A = A(e) | 0 as € | 0. The role of A(e) is to exploit a
time-scale separation. Let A1, A>, B, I" be Borel sets of Z, Z, ), [0, T] respectively.
Let u§ € A;,i = 1,2 and let (X¢(s), Y¢(s)) solve (3.4) with u¢ in place of u;. We
associate with (X€(s), Y¢(s)) and u$ a family of occupation measures P2 defined
by

PS2(A; x Ay x Bx IN)

1 t+A —
:ﬁ[g/ lAl (l,ti(s))lA2 (uz(s))IB(Y; mod )\) dsi| dt.
t

We assume that uf (s) =0 fori=1,2if s > T.

For presentation purposes, we devote Sect. 3.1 to the limiting behavior of the con-
trolled process {(X€,Y€),e >0} in (3.4) as € J 0. This is a law of large numbers
result. The large deviations result is in Sect. 3.2

3.1 Limiting Behavior of the Controlled Process (3.4)

Theorem. 3.2, deals with. the limiting behavior of the controlled process (3.4) under
each of the three regimes, and uses the notion of a viable pair.
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Theorem 3.2 Assume Condition 2.1 and under Regime 1 assume Condition 2.2. Fix
the initial point (xg, yo) € R™ x RY™" and consider a family {u€ = (u§,u5), e >0}
of controls in A satisfying

T
sugE/O [||uﬁ(s)||2 + ||u§(s)||2] ds < oo. (3.5)

Then the family {(X€, PS%), € > 0} is tight. Given the particular regime of interaction
i = 1,2, 3 and given any subsequence of {(X¢,P%), € > 0}, there exists a subsubse-
quence that converges in distribution with limit (X', P'). With probability 1, the limit
point (X!, P') € Vi, .ciy» according to Definition 2.5, with the pairs (Ai, L") given by
Definitions 2.3 and 2.4.

Proof We will only present the proof for Regime 1, since the proof for the other
regimes is completely analogous. We start by proving tightness and then we identify
the limit.

Tightness of {X€, € > 0} follows if we establish that for every > 0

lim lim supIPxO,yO[ sup |X<(0) — X (12)| > n] —0. (36
L0 €10 lti—t2]<p,0<t; <tr<T

The difficulty to obtain this estimate in Regime 1 is due to the unclear behav-
ior of the term gfot b(X€(s), Y<(s))ds as €/8 1 0o. We treat this term by applying
Itd formula to x (x, y), the solution to the cell problem (2.1). By doing so, we can
rewrite the first component of (3.4), omitting function arguments in some places for
notational convenience, as

dX€(s) = A (X(5), Y(s), u1(s), uz(s)) ds

ax ax €d T'E)zx T 82)(
+<eab+8£(c+aul(s))+?aa .W—i—earl m

x (X€(5), Y (s)) ds
+ (ﬁ(o + aa—)y(r1> + \/Eag—;(o>(f(f(s), Y€(5)) dW(s)

+ JEZ—); (X (s), Y¥(5)) d Bs.

Then, from this representation and the boundedness of the coefficients and of the
derivatives of x (Chap. 3, Sect. 6 of [6]), statement (3.6) follows, which then gives
tightness of {X€, € > 0}.

Tightness of the occupation measures {P€2, € > 0} follows from the bound
sup By v, [g(PG’A)] < 00, (3.7)
€(0,1]

€

for the tightness function g(r) = [z, 2, yyo.rylIz11I* + lz2lI*Ir(dz1 dza dy dp),

e P22 XV %[0, 7] To- be precise,-notice that the function g(r) is a tight-
ness function since it is bounded from below, with relatively compact level sets
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Gr={reP(2>xYx[0,T]) : g(r) <k} for each k < 0o. Then, by Theorem A.19
in [11], it is known that tightness of {P“, € > 0} holds if (3.7) holds. However, this
follows directly from Condition (3.5), due to the estimate

sup Ky v, [g (PG’A)]

€e(0,1]

= sup Eyy, [ / [Nz1l* + llz2 |12 ]PS2 (dz1 dza dy dr)}
€e(0,1] Z2xYx[0,T]

= s B [ 1 [ TGO + s asa

€€(0,1]

< Q.

Hence, we have established that the family {(X€, P$2), € > 0} is tight. Next, we
prove that any accumulation point will be a viable pair according to Definition 2.5.
Tightness guarantees that for any subsequence of € > 0 there exists subsubsequence
that converges, in distribution, to some limit (}_( , P) such that

(X, P%) > (X,P).

Making use of the Skorokhod representation theorem we may assume, by the intro-
duction of another probability space, which we omit writing in the notation, that this
convergence holds with probability 1 (Theorem 1.8 [16]). Fatou’s Lemma gives us

Exo.30 / [Iz111* + llz2I*]P(dz1 dza dy dt) < o0 (3.8)
ZxZxYx[0,T]

which then implies that /ZXZny[O,T][”Z‘ 12 + ||Zz||2]_P(dzl dzydydt) < oo w.p.l.

Thus, we need now to prove that the limit point (X, P) € V; | 1, according to
Definition 2.5. Some of the computations here are analogous to those of the proof of
Theorem 2.8 in [12]. We recall for completeness the main arguments appropriately
modified to cover the more general case that is considered here.

We start with (2.2). This follows from the characterization of solutions to SDE’s
via the martingale problem formulation and the averaging principle [6, 16]. We fix a
collection of elements p, g, S, ¢, T, F, ¢;, ¢ that are defined as follows. S,#;, 7 >0,
i <gq aresuchthat#; <S < §+ 1 <T. The real valued functions F, ¢; are smooth
and have compact support. Moreover, ¢ is a real valued, bounded and continuous
function with compact support on (R”)? x RP?,

Then, we define Af’A b

AAF () = f Mx.y 21 2)VE@P Y dadady)  (39)
ZxZxY
where

1 t+A B
Pi’A(dm dzp dy) = " [ Liz, (ui (s)) laz, (ug(s)) 1,1y(Ye (s) mod )L) ds.
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With these definitions at hand, (2.2) follow, if we prove that, as € | 0,

Exo.30 [c(ff;, (P, ¢)),.i=q.J = ,,)[F(;ze(s +1)) = F(X°(9))

S+t _ _
—f Af’AF(XE(t))dtH -0 (3.10)
S
and, in probability,
S+t _ B _
Aﬁ’AF(XG(S))dS—/ Xy, v, 21, 22)

S ZxZxYx[S,S+71]

x VF(X(s))P(dz1dzadyds) — 0. (3.11)

Then, the pair (}_( ,P) solves the martingale problem associated with (2.2), which
implies the latter.

So, let us first prove (3.10). Notice that under the topology of weak convergence
and due to the fact that the last marginal of P is Lebesgue measure w.p.1., we have that
for every t € [0, T'] and for every real valued, compactly supported and continuous
function ¢

(P2, ¢), —> (P.¢); w.p.l.

Next, we recall the solution x(x,y) to the cell problem (2.1). Let ¢ =
{¥1, ..., ¥q} be defined by e (x, y) = xe(x, y) Fy,(x) for £ =1,...,d. Notice that
Ye(x,y) is periodic in every direction in y, with period A, and satisfies

L e, ¥) = —be(x, ) Fry (5), /ywux,ym(dym:o. (3.12)

Applying Itd’s formula to 1//()_( €(s), Y(5)) gives us that relation (3.12) and the
boundedness of x (x, y) and its derivatives guarantee the validity of (3.10), if

S+t _ B _ B _
/S [ASAF(X(s)) — A1 (XE(5), YE(5), u§(5), us(s)) VE (X (s))]ds — 0,
ase |0, (3.13)

in probability. However, this is exactly the second statement of Lemma 3.2 in [12] by
taking as g(x, y, 21, 22) = A1(x, ¥, 21,22) - Vf(x). On the other hand, (3.11) is the
first statement of Lemma 3.2 in [12], with the function g as was just specified. These
give the proof of (2.2).

Next, we establish relation (2.3). Let A§1 z,.x De the operator associated with the

fast motion Y€ in (3.4) with z; = u1, zo0 = us and x = X¢ fixed,

€ € 1
Azuzz,xF(y): S_Zf(x,y)'i‘g[g(x,y)—i—‘cl(x,y)Zl+T2(X7y)22] VyF(y)
1
+ 55 (@ +nd)6. ) : v,V FO) (3.14)
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for functions F € C2()). Consider, {F;: Y R, £ e N} to be a smooth and dense
family in C?()). Then, notice that

t
M§ =Fy(Y<(1)) — Fe(yo) — /0 A;l (S)‘MZ(s)Y}-(e(s)Fe(Yg(s))ds

is an §;-martingale. Next, let

52
gle)=—
€
and notice that g(e)AS, . | converges to 6;1,22,): under Regime 1, as € | 0. Based on

this observation and denoting Gy y -, ., Fe(y) = [g(x, y) + T1(x, y)z1 + 11(x, y)z2] -
Vy Fe(y) we write

geOM; — g(O[Fe (Y1) — Fe(y0)]

t 1 s+A _
— € _ €
R A A A P T
t
€ €
_/0 Aui(s),ug(s),)?f(s)Fe(Y (S)) dsj|
S/ L1 [sta _
— — _ €
—_g(/o Z[/S [95< (0.7 (011 (0. o) FL (Y€ ()

= Oxeo). 7 (o1 (o Fe (Y (0))] dp] ds)

./ s d
€ gXE Ie(y)P ’Z( Zldzzdyds)>
( ZxZxYx[0,1] (5).y,21,22

! 1 s+A 1 € 1 €
- /0 X[ / (L, Fe(T9(0)) = L. Fe(V <p>)]dp]ds

- f L. ( )Fg(y)Pe’A(dm dzpdydr). (3.15)
ZxZxYx[0,1] s
Let us now analyze the different terms in (3.15). In particular

(i) We have that g(e)M; | 0 as € | 0 in probability. Indeed, we can rewrite
t
i =3[ [0 R(70) 0 (%) P @) aw )
0
t
+/O VyFe(Yf)-rz(XE(S),YE(S))dB(S)],
which allows us to obtain that E, , [M;]2 < Coﬁ, and so g(e)M; | 0 follows

)[Fg(l_/6 (t)) — Fe(yo)] converges to zero
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(iii)) By Condition 2.1 and since A | 0, §/¢ | 0, the term

1 s+A _
— € _ €
g(e)[/o A[/S Ao zeo e (p))dp} ds

t
€ €
_ /0 Ao s e Pe(F (s))ds]

converges to zero in probability.

(iv) Tightness of {)_( €, € > 0} and Conditions 2.1, (3.5), imply that the first and the
third term in the right hand side of (3.15) converge to zero in probability as
8/e | 0.

(v) Uniform integrability of P©"* and the fact that §/€ | 0 imply that the second term
on the right hand side of (3.15) converges to zero in probability.

Therefore, we finally obtain that

/ Ll xe Fe (»)P“*(dz1dzadydt) — 0,  in probability.
ZxZxYx[0,T] ‘2t

Then, this implies (2.3), by continuity in ¢ € [0, T] and density of {F; : V — R,
¢ e N}

It remains to prove (2.4). It is clear, that the analogous property holds at the pre-
limit level. Moreover, since P(Z x Z x Y x {t}) =0 and the map r - P(Z x Z x
Y x [0, t]) is continuous, one can deal with null sets. Thus, (2.4) follows.

The proof for Regimes 2 and 3 is completely analogous with the only exception
that for the purposes of the proof (2.3), for Regime 2 we define g(¢) = € and for
Regime 3, g(¢) = 4. This completes the proof of the theorem. g

3.2 Large Deviations for {X€¢, € > 0}

In this subsection we present the main large deviations result. The main difference
from the case considered in [12] is the identification of the correct viable pair with
respect to which the large deviations principle is expressed to. The proper viable pair
in each regime is indicated by Theorem 3.2.

Theorem 3.3 Let {(X€,Y¢), € > 0} be the unique strong solution to (1.1) and con-
sider Regime i = 1,2, 3. Assume Condition 2.1 and under Regime 1 assume Condi-
tion 2.2. Define

1

S'(¢)=inf [— / [lz1l* + ||zz||2]P<dmdzzdydt)],
@-PeV;. i L2 JZxZxyx(0.1]

(3.16)

with.the convention. that the infimum over.the empty set is oo. The pairs (A;, L) are
given in Definitions 2.3 and 2.4. Then, we have
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(i) The level sets of S' are compact. In particular, for each s < 0o, the set
o ={peC([0,T;R™): S (¢) <5}

is a compact subset of C([0, T]; R™).
(ii) For every bounded and continuous function h mapping C([0, T]; R™) into R

liminf —e InEy, ,, | exp BLICSON | I [S'(#) + h()]

€10 00 € ~ $eC([0.T1:R™) '

(iii) In the case of Regime 3 assume either that we are in dimension 1 i.e., m =1,
d=2,orthat g(x,y)=g() and 1;(x,y) =7 (y),i = 1, 2 for the general mul-
tidimensional case. Then for every bounded and continuous function h mapping
C(0,TT;R™) into R

. h(X€) : <
1 —eInE,, - < f S'(p) + h()].
lTisglp o xo”o[eXp{ € ”_zbecqg,lT];Rm)[ @#)+h@)]

In other words, under the imposed assumptions, {X€, € > 0} satisfies the large devi-
ations principle with action functional S*.

For the sake of presentation, the proof of Theorem 3.3 is deferred to the end of
this section. In the case of Regime 1 we can get an explicit characterization of the
rate function.

Theorem 3.4 Let {(X€, Y€), € > 0} be the unique strong solution to (1.1) and con-
sider Regime 1. Under Conditions 2.1 and 2.2, {X€, € > 0} satisfies a large deviations
principle with rate function

LT @) = r @)™ (@) (@(s) — r((s))) ds
S@) =1 ifpeACUO0, T];R™) and ¢(0) = xo

400 otherwise.
Proof It follows by putting Lemma 3.6 and Theorem 3.7 below together. O

Notice that the coefficients r(x) and g (x) that enter into the action functional for
Regime 1 are those obtained if we had first taken to (1.1) § | O with € fixed and
then consider the large deviations for the homogenized system. Indeed if € = 1, then
X% = X1 can be shown to converge weakly in the space of continuous functions in
C([0,T]; R™), as § | 0, to the solution of an SDE with drift coefficient r(x) and dif-
fusion coefficient ¢'/?(x). This can be derived via standard homogenization theory
[6, 31]. The action functional for a small noise diffusion with drift coefficient r(x)
and diffusion coefficient /€g'/?(x) is the one given by Theorem 3.4. This is in ac-
cordance to intuition since under Regime 1, § goes to zero faster, so homogenization
should occur first as it indeed does.

Remark 3.5 Notice that if we set f.=.b, ¢ = ¢, = 11 and 70 = 0 in the statements
of Theorems 3.2-3.4, then one recovers the results of [12].
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The reader may wonder, why we have imposed further structural restrictions for
part (iii) of the theorem for Regime 3. This is because we were not able to prove some
smoothness requirements of the constructed nearly optimal controls in the prelimit
level with respect to x in the general multidimensional case when the coefficients
g, 71 and 172 depend on x. Similar issues arise in the case considered in [12] and are
discussed in detail there. However, observing the viable pairs that characterize the
large deviations principle for Regimes 2 and 3, (A2, £2) and (A3, £3) respectively,
we notice that Regime 3 can be thought of as a limiting case of Regime 2 with y = 0.
So, one is led to conjecture that the extra assumptions for Regime 3 are not necessary,
even though we currently do not have a proof for this.

Next, we proceed with the proof of Theorem 3.3. The proof is based on two inter-
mediate results, which we present now. Lemma 3.6 allows us to equivalently rewrite
the action functional .

Let AC([0, T]; R™) be the set of absolutely continuous functions from [0, T'] to
R™.

Lemma 3.6 Consider the set-up of Theorem 3.3. Then, fori =1, 2,3 we have

Si($) = { foT Li(¢(s), d(s))ds if ¢ € AC([0, T1; R™) and ¢ (0) = xo
+00

otherwise,

where

1
Li(x,f)= inf {—/nv(y)qu(dy)} (3.17)
W,weA 4 2Jy

with
iy {v(~) =), 20): V> R* nePQ): (v, )
satisfy /y Ly (0 FO) (dy) =0
forall FeD(L), , ), /yUu(y)Hzp,(dy) <0

andﬂ=/yki(x,y,vl(y),vz(y))u(dy)}-

Proof The proof of this lemma follows easily by an appropriate rewriting of the cor-
responding expressions. First, notice that (3.16) can be written in terms of a local rate
function

. T .
S'(¢) = /0 Li(¢(s), d(5)) ds
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(if ¢ is absolutely continuous). This follows from the definition of a viable pair by
setting

. 1
Li(x,B)= inf / ~[hz11* + llz2II*]P(dz1 dz2 dy), (3.18)
PE'A:’..rﬂ Zxeyz

where

21,22,X

br {PeP(Zxey):

= yﬁ" F(y)P(dz1dzady) =0

ZxZx
forall F € D(Ei )

21,22,X

f [Iz111% + llz2l1*]P(dz1 dz2 dy) < o0 and
XZxY

B = A;(x,y,a,zz)P(dzldzzdy)}.
ZxZxY

Second, we note that P € P(Z x Z x ) can be decomposed into marginals as follows
P(dz1dzady) = n(dz1dz2|y) nu(dy).

This, the convexity of the cost on (z1, z2) and the affine dependence of A; on (z1, z2)
imply that the relaxed control formulation (3.18) and the ordinary control formulation
(3.17) are equivalent by taking

w () =/ Zi n(dz1 dzaly).
ZxZ

Hence, the statement of the lemma holds. O

Now, we use the representations in Lemma 3.6 to obtain the controls needed in
the proof of part (iii) of Theorem 3.3. In the case of Regime 1 we can be even more
specific and obtain a closed form expression for the variational problem associated to
the local rate function L (x, 8) appearing in Lemma 3.6. The derivation of the closed
form expression is based on identifying an optimal control that is then used to prove
Theorem 3.3. The proof of this statement is based on a straightforward Lagrange
multiplier type of analysis of the variational problem (3.17) for i = 1 and thus omitted
(see also Theorem 5.2 in [12] for an analogous situation). In the case of Regime 2 and
Regime 3, we can obtain that there is pair (v, n) that attains the infimum in (3.17).
We collect these statements in the following theorem. Its proof is omitted, since it
follows analogously to the corresponding proofs of Theorems 5.2, 6.2 for Regimes 1
and 2 respectively and from Sect. 7 for Regime 3, of [12].

Theorem 3.7 Assume Condition 2.1 and in the case of Regime 1 assume Condi-
tion 2.2. The infimization problem (3.17) for i = 1 has the explicit solution

1
Li(x.B)=5(B - r@) ¢ @)(B—r),
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where

o r(x) = fylelx, y)+ Ex, y)g(x y))u(dylx)
o g(x) = [ylo +7 By Tl)(0+ Tl)T + (& Tz)(;,v )" 1(x, y) n(dylx),

and where u(dy|x) is the unique invariant measure corresponding to the operator
C}C and y (x,y) is defined by (2.1). The control

iu(y) = (i1,p(x, ), 2,8(x, )

9 T
_ (<a + %n) g~ (B — r(),

9 T
(%Tz) (x,y)q—1<x)(/3—r<x>)>

attains the infimum in (3.17).

In the case of Regime 2 and in the one dimensional setting of Regime 3, there is
a pair (i, [1) that achieves the infimum in (3.17) such that u = ug(x,y) is, for each
fixed B € RY, continuous in x, Lipschitz continuous in y and measurable in (x, y, B).
Moreover, ji(dy) = fia(dy|x) is the unique invariant measure corresponding to the

operator £u () i =2,3, and it is weakly continuous as a function of x. In the

x-independent multidimensional case of Regime 3, there is a P € .AZ’r that achieves
the infimum in (3.18) or equivalently in (3.17).

Now we have the necessary tools to prove Theorem 3.3.
Proof of Theorem 3.3 Part (i). As in Lemma 4.1 and Lemma 4.3 of [12], one can
establish that @! is precompact and closed, respectively. These two statements, then

give compactness of ®!.
Part (ii). We have the following chain of inequalities:

o h(X<)
llreribnf —elnEy, y,| expy— p

(1
zlim%nf@axo,yo 2/ [lu§@ |+ |us@|*]dr + h(X )]—e)

€l

zh%nf(Exo,yo / / [u$ )|+ ||u§(s)”2]dsdt+h()_(€):|>

=liminf( E,,. —/ lzull? + lz2)1]P“2 (dz1 dzady dt) + h(X })
mini(Ea3 [ ] (%)

1 _ _
Exo.30 5 [lz11% + llz2l1*|P(dz1 dz2 dy dt) +h<X>]

ZxYx[0, T]
> inf {
(¢.P)eV ZxZxYx[0,T]

= ¢eC([%)I,1£];Rm)[Sl @ +h@)]

[Iz111* + lz2[I*]P(dz1 dza dy dt) + h(«p)}
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The first line follows by the representation formula (3.3). The fourth line by Theo-
rem 3.2 and Fatou’s Lemma. This establishes the lower bound.

Part (iii). In each regime we follow the same general steps. What differs from
regime to regime, is the form of the viable pair (A;, £1) in the definition of the action
functional S’ (-). To prove the Laplace principle upper bound we must show that for
all bounded, continuous functions 2 mapping C([0, T']; R™) into R

limsup —€ In[E exp _hXY) < inf _ [S'(¢) +h(e)]
€10 0.0 € ~ $eC((0,TI;R™) '

By the variational representation formula (3.3), it is enough to prove that

. ) 1T 2 2 5
im0 B 3 [ L))+ o s ()

< _inf _ [§'(@®) +h(9)]. (3.19)

~ ¢eC(0,T;R™)

In each regime, we consider for the limiting variational problem in the Laplace
principle a nearly optimal control pair (Y, P). In particular, let n > O be given and
consider ¢ € C([0, T']; R™) with g = x¢ such that

S‘W)+h@) < inf  [S'(¢) +h(@)]+n < oo.
¢eC([0,T;R™)

Let us consider first Regimes 1 and 2 and Regime 3 in dimension 1. By
Lemma 3.6, the local rate function of ' is L; (x, B) given by (3.17). By Theorem 3.7,
it is clear that L(x, B) is continuous and finite at each (x, 8) € R¥". As in The-
orem 6.3 in [12] the same is true for Regime 2 and as in Theorem 7.2 of [12] for
Regime 3 in dimension 1. Thus, a standard mollification argument, allows us to fur-
ther assume that vy is piecewise constant (see for example Lemmas 6.5.3 and 6.5.5
in Sect. 6.5 of [11]). Then, by Theorem 3.7, we obtain that with 8 = 1&;, there is
L_‘I/}, (x,y)= (ﬁln/'/x (x,y), ﬁ2’¢t (x, y)) that is bounded, continuous in x and Lipschitz
continuous in y, and piecewise constant in ¢ such that

1 )
i, (x,) € argminv{i /y”v(y) ||2,u(dy) t(v, 1) € A;’]/-/r}. (3.20)

Let us denote by f1; (dy) the unique invariant measure corresponding to the opera-
tor £’ﬁ’ . Tor this particular control # (which exists due to Theorem 3.7). The feedback
type of control used to prove the upper bound is then

a€ (t) =it (X0), Y0) = (1), (X@), Y0)), 1y, (X (@), Y (1))

By Condition 2.1 and since « is continuous in x and y, (3.4) has a strong solution
with (u(2), uz(t)) = uc(z).

Then, standard averaging theory (e.g.,.Sect. 6, Chap. 3 of [6]) and the fact that
i i (x,»(-) 1s weakly continuous in x (Theorem 3.7) and piecewise continuous in ¢
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we have that X¢ 2) X, where
- t - -
X, =x0+ /0 /yxi (X, it (X, y))p,% (&, (dy)ds.
Then for ¥ such that yg = xg, (3.20) and the definition of A; i gives us that

t
)_(t=x0+/ 1/}Sds=w, for any t € [0, T], w.p.1.
0

Therefore, by the representation formula (3.3) and (3.20) we finally obtain that

h(X€
lim sup[—e InEy, y, |:exp{ - (X ”i|
€10 €

1 (T _
—limsup inf Em,m[— / [||u1(t)||2+||u2(t)||2]dt+h(X€)}
€l0  (ur,u2) 2 Jo

T
gnmsupxam[l [ ||ﬁe(;>||2dt+h(5zf)]
€10 2 Jo

=Eyy 0[S X)) + h(X)]
[S'(¢) +h()] +n.

< inf
¢<C([0,T[;R™)

Since 7 is arbitrary, we are done. The proof of part (iii) for Regime 3 follows as in
Sect. 7 of [12], using the fact that there is (by Theorem 3.7 below) a P € AZ’F that
achieves the infimum in (3.18). U

4 Importance Sampling

The purpose of this section is to utilize the large deviations results of Section 3 in
order to obtain asymptotically efficient importance sampling schemes for quantities
like (1.2). Simulation problems involving rare events unavoidably have a number of
mathematical and computational challenges. As it is well known, standard Monte
Carlo sampling techniques perform very poorly in that the relative errors under a
fixed computational effort grow rapidly as the event becomes more rare. Rare event
estimation problems for systems of fast and slow motion present extra difficulties due
to the underlying fast motion and its interaction with the intensity of the noise €. In
particular, one needs to take into account the solution to the appropriate cell problem
associated with the homogenization theory of HIB equations in order to guarantee
asymptotic optimality. Related simulation results are provided in [13, 14] for the
special case f(x,y) =b(x,y) =—-VO(y), glx,y) =c(x,y) =—-VV(x),0(x,y) =
71(x, ¥y) = constant and 73 (x, y) = 0.

We._start by reviewing general things about importance sampling adjusting the
discussion to our setting of interest. Consider a bounded continuous function 7% :
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R™ +— R and suppose that one is interested in estimating
6(e) = E[e™«"X | X< (19) = x0. Y (t0) = yo]

by Monte Carlo, where the pair of slow and fast motion (X€, Y¢) has initial point
X€(ty) = x0, Y (t9) = yo. For Regime i = 1,2, 3, let

Gi(1, x0) = [Si,7 (@) +h(6(D))]. 4.1

in
¢eC([1o, TT:R™), ¢ (tg)=x0

As we shall see below, under regularity conditions, the function G; (¢, x) satisfies
a PDE of HJB type. Now, depending on the regime of interaction, the contraction
principle implies

lim —elogf(e) = G;(ty, x0). “4.2)
e—0

Notice that the limit is independent of the initial point yg of the fast motion Y. This
is due to the averaging that takes place, as we shall also see later on in the rigorous
proofs.

Let I"“ (o, x0, yo) be any unbiased estimator of 6 (¢) that is defined on some prob-
ability space with probability measure P. With E denoting the expectation operator
associated with P we have that "¢ (¢, xo, yo) is a random variable such that

EI (10, x0, y0) = 60(e).

In Monte Carlo simulation, one generates a number of independent copies of
I'“(t,x,y) and the estimate is the sample mean. The specific number of samples
required depends on the desired accuracy, which is measured by the variance of the
sample mean. Because of unbiasedness, minimizing the variance is equivalent to min-
imizing the second moment. Jensen’s inequality implies

E(I (10, x0, ¥0))” = (BT (t0, x0, y0))" = 6(e)*.

This and (4.2) say that

limsup —e log E(I"* (19, xo, yo))2 <2Gi(to, x0).

e—>0

Hence, 2G; (19, xo) is the best possible rate of decay of the second moment. If
limigf—f log E(I"“ (t, x0. yo))2 > 2Gi(to, xo0),
€—

then I"(f9, x0, yo) achieves this best decay rate, and is said to be asymprotically
optimal.

It is important to note here that asymptotic optimality is not the only practical
concern. Rare events associated with multiscale problems are rather complicated and
many.times.is.it very difficult to.construct asymptotically optimal schemes. One way
to circumvent this difficulty is by constructing appropriate sub-optimal schemes with
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precise bounds on asymptotic performance. This is the content of Theorems 4.6, 4.8
and 4.10 for Regime i =1, 2, 3 respectively.

Fix the Regime i = 1, 2, 3 and assume that we are given a control u(s, x, y; i) that
is sufficiently smooth and bounded. Let us recall the 2« -dimensional Wiener process
Z(-) = (W(-), B(-)). Consider the family of probability measures P defined by the
change of measure

dp¢ | o a2
7P _exp{—z‘/to Hu(s,X (5),Y (s),l)” ds

T
+%/m (ﬁ(s,Xf(s),Yé(s);i),dZ(s))}.

By Girsanov’s Theorem

s

Z(f)—Z(s)—T a(p, X(p),Y(p);i)dp, to<s<T
0]

is a Wiener process on [fp, 7] under the probability measure P¢, and (X€, Y¢) sat-
isfies X€(79) = xo, Y(#0) = yo and for s € (¢, T] it is the unique strong solution of
(3.4) with Z(-) = (W(-), B(")) in place of Z(-) = (W(-), B(-)) and u(s,x,y;i) =
(u1(s,x,y;0),u2(s,x,y;i)) in place of u(s) = (u1(s), uaz(s)).

Letting

dP
(19, xo, yo)—exp{——h(Xe(T))}dP (Xx€,Y°),

it follows easily that under P¢, I (1o, x0, Yo) is an unbiased estimator for 0(¢). The
performance of this estimator is characterized by the decay rate of its second moment

_ 2 dpP 2
Qe(to,xo,yogﬁ)iEe[exp{—gh(Xe(T))}<dP (x©, Y€)> } 4.3)

We construct asymptotically efficient importance sampling schemes by choosing
the control & in (4.3) such that the behavior of the second moment Q€ (¢, xq, yo; i)
is controlled. Two are the main ingredients in the construction of u:

(i) The gradient of a subsolution to the PDE that the function G; (¢, x) defined in
(4.1) satisfies. Under appropriate regularity conditions G; (¢, x) satisfies a PDE
of Hamilton-Jacobi-Bellman (HJB) type.

(i) The solution to the associated cell problem or in other words the so-called cor-
rector from the homogenization theory of HJB equations.

Depending on the regime of interaction the HJB equation and the corresponding
cell problem take a different form. These will be made precise in Sects. 4.1-4.3.

As mentioned before, we work with appropriate subsolutions to the associated
HJB equation. Thus, let us now recall the notion of a subsolution to an HJB equation
of the form

Gy(s,x) + H(x, Vs G(s.x)) =0,  G(T,x)=h(x). 4.4)
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Definition 4.1 A function U(s, x) : [0, T] x R™ — R is a classical subsolution to
the HIB (4.4) if

(i) U is continuously differentiable,
(i) l{s (s,x)+ H(x,V,U(s, x)) >0 forevery (s,x) € (0,T) x R"™,
i) U(T,x) < h(x) for x € R™.

We will impose stronger regularity conditions on the subsolutions to be considered
than those of Definition 4.1. This is convenient for the purposes of illustrations since
then the feedback control is uniformly bounded and thus several technical problems
are avoided. However, we mention that the uniform bounds that will be assumed
in Condition 4.2 can be replaced by milder conditions with the expense of working
harder to establish the results.

Condition 4.2 U has continuous derivatives up to order 1 in t and order 2 in x, and
the first and second derivatives in x are uniformly bounded.

Roughly speaking, our main result is as follows.

Theorem 4.3 Consider a bounded and continuous function h : R" — R and as-
sume Conditions 2.1 and under Regime 1 assume Condition 2.2. Let {(X€(s), Y¢(s)),
€ > 0} be the solution to (1.1) for s € [to, T] with initial point (x¢, yo) at time ty. Un-
der Regimei =1,2,3 letu(s, x, y; i) be an appropriately defined and smooth control
in terms of a subsolution Ui (s, x) to the HIB satisfied by G; (s, x) and the corrector
from the corresponding cell problem. Then

limi(r)lf—e In O°¢ (to, X0, yo; i (+; i)) > G; (1o, x0) + U; (to, x0). 4.5)
€—>

Once we have established a Theorem like 4.3, we can make a claim for estimating
probabilities of the form Py y y[X €(T) € A] as well. The claim of the following
proposition is not readily covered by Theorem 4.3, since the function 4 is neither
bounded nor continuous. However, by an approximating argument analogous to [15]
the claim can be established. We omit the details of the proof and only present the
statement.

Proposition 4.4 Assume Conditions 2.1 and 4.2 and under Regime 1 assume Condi-
tion 2.2. Let {(X€,Y€), € > 0} be the solution to (1.1) with initial point (ty, xg, y0).
Under Regime i, let A C R™ be a regular set with respect to the action functional S'
and the initial point (ty, xo, y0), i.e., the infimum of St over the closure A is the same
as the infimum over the interior A°. Let

{0 ifxeA
h(x) = .
+oo ifx ¢ A.

Let (s, Xy y5i)-be.anappropriately.defined and smooth control as in Theorem 4.3.
Then (4.5) holds.
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Notice that the lower asymptotic bound of Theorem 4.3 and Proposition 4.4 is
independent of the initial point yq of the fast component Y. This is due to averaging.

Remark 4.5 Since l_],- is a subsolution, we get that Ui (s,x) < G;(s, x) everywhere.
By (4.5) this implies that the scheme is asymptotically optimal if U;(to, xo) =
Gi(ty, xo) at the starting point (o, xo). Standard Monte Carlo corresponds to choos-
ing the subsolution U; = 0. Hence, any subsolution with value at the origin (7, xgo)
such that

0 < Ui (to, x0) < Gi(to, x0)

will have better asymptotic performance than that of standard Monte Carlo.

In the next subsections we present how one can choose the controls u(s, x, y; ) in
terms of a subsolution U and its corresponding cell problem such that the bound men-
tioned in Theorem 4.3 is attained. The situation is subtle here due to the multiscale
aspect of the problem.

4.1 Importance Sampling for Regime 1

In this subsection we construct asymptotically efficient importance sampling schemes
for Regime 1. In Regime 1, the form of the Hamiltonian H(x, p) in (4.4) is naturally
suggested by the calculus of variation problem (4.1) and the explicit formula of the
rate function StlT (¢) in Theorem 3.4:

_ 1
H(x,p)=(r(x), p)— E(p,qmp). (4.6)

In fact, under mild conditions G from (4.1) is the unique viscosity solution to (4.4)
with H (x, p) defined by (4.6).
We have the following Theorem.

Theorem 4.6 Let {(X€(s), Y¢(s)), e > 0} be the solution to (1.1) for s € [ty, T]
with initial point (xo, yo) at time ty. Consider a bounded and continuous function
h:R™ > R and assume Conditions 2.1, 2.2 and 4.2. Let Ui(s, x) be a subso-
lution to the associated HIB equation. Define the feedback control u(s,x,y; 1) =
(i1 (s, %, y; 1), it (s, x, y; 1)) by

T T
(s, x,y; 1) = <—<U+8—XTI) (x,y)Vxl_fl(s,x),—(a—Xn) (x,y)Vxl_f](s,x)).
ay dy

Then the conclusion of Theorem 4.3 holds, i.e.

1imi(1)lf—€1n 0¢ (10, x0, yo; ii(:; 1)) = G (to, x0) + U, (t0, x0).
€E—>

Before proceeding with the proof, we notice that the feedback control (4.6) is
essentially. implied by the solution to.the variational problem associated with the local
rate function in the definition of the action functional for Regime 1, Theorem 3.7.
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Proof Note that under the given conditions u(s, x, y; 1) is Lipschitz continuous in
(x, y), continuous in (¢, x, y), and uniformly bounded. For notational convenience,
we omit the subscript 1 from G| and &1 and we write (¢, x, y) in place of (¢, xg, Y0)-

Boundedness of & and u# imply by the representation formula (3.3) and by the
Lemma 4.3 of [13] that

—elog Q°(, x, y; it)
. 1 T 2 T - e 23 2 Y€
= 1n£E|:E/ [ve)| ds—/ llia(s, X(s), Y())|I* ds + 2h(X (T)):|,
ve t t
.7
where v(s) = (v1(s), v2(s)), i(s, x, y; 1) = (it1 (s, x, y: 1), dia(s, x, y; 1)) and (X, V)
satisfying
dX€(s) = [gb(f(f(s), YE(s)) + E(X(s), Y<(s)) + o (XE, I?f)vl(s)i| ds

+eo (XE(s), V() dW (),

ave(s) = L€ p(xe (o). 7€ 2 (R (s). V° X< (s). 7
(S)—g[gf( (s), (S))+g( (s), (S))+r1( (), (S))v1(S)(4.8)

LT

+ 0 (XE(s), Yf(s))uz(s)] ds + X€(s), Y(5)) dW (s)

+12(X(5), Y(5)) dB(s)],

X€0)=x0,  Y(0)=yo
with

5(5735,)’)=C(X,Y)—U(x,)’)ﬁ1(5’x,)’§ 1) (49)
205, x,y) = g(x, y) — 11 (x, Wity (s, x, y; 1) — oo (x, yiaals, x, y; 1).

The next step is to take the limit infimum in the representation (4.7). The right
hand side of (4.7) can be bounded by below in the limit € | O using statement (ii)
of Theorem 3.3 with two differences. The first difference is that the functions c, g in
the definition of the first component of appropriate viable pair (A1, £'), see Defini-
tion 2.4, are replaced with ¢, g. Using Theorem 3.7, the local rate function takes the
form

1
Lt p)=5(8~ 7(5,0) ¢~ ) (B = (s, x))

where 7 (s, x) = r(x) — [}, (o1 + g_;mzl + %rzﬁz)(s, x,y) u(dy|x). Here u(dy|x)
is the invariant measure defined in Condition 2.2. This takes care of the limit of first
term on the right hand side of (4.7). The second difference is the presence of the ad-
ditional integral term.— ftT [[i2.GS Xe () ye (s))1|* ds. Using classical averaging argu-
ments, see [6], appropriately modified to treat controlled processes, as in Lemma 3.2
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in [12], this term can be replaced in the limit as € | 0 by its averaged version with
respect to u(dy|x). This takes care of the limit of second term on the right hand side
of (4.7). Putting these together, we have

limi(r)lf—e log Q¢ (¢, x; it)
. r : r - 2
=t [ n@e.de)as— [ [ [ln o)
+ |2 (s. @ (), y) ||2] w(dylg(s))ds +2h (¢(T)):|. (4.10)
By recalling the formula for i = (11, 1) we have for ¢ € AC([¢t, T]; R™)

T
f /y[||ﬁ1(s,¢<s),y)||2+nﬁz(s,qs(s),y)||2]u(dy|¢(s))ds
t

T - -
= f (ViU(s.9(9)), g(x)VU (s, ¢(s)))ds.
t
Thus, we have

liminf —e log Q¢ (¢, x; i)
e—>0

1 T
> inf |:—/
. 0(=x]2 J;

—/y(oﬁl + %‘L’lﬁl + %rzﬁz) (s, (s), y)u(dylp(s))

$(s) — ()

2
ds
g (P ()

_/tT/y[||ﬁ1(S»¢(s),y)||2+ ||L72(S,¢(S),Y)Hz]pc(dqu.')(s))ds+2h(¢(T))]

2

T
. 1,
= peACr T b0 [/t [5 [66) =r(@®) 415

—(p(s) = (o)), ViU (s, ¢><s>))] ds

1

T
- 5/ (ViU(s,9(5)), g(x)V U (s, ¢(s)))ds +2h(¢(T))]

= inf s} 2h(p(T
¢eAC([t,T1]I;lRm),¢(z)=x|: tT(¢)+ (¢( ))

- /tT((¢'>(s) —r($()). VaU(s5.9()))

(4.11)
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In the first equality we have used the definition of u = (i1, i) whereas in the second
equality we used the definition of the action functional by Theorem 3.4.

Given an arbitrary ¢ € AC([z, T]; R™) with ¢(¢) = x, the subsolution property
implies that

. _ 1 _ _
~(¢) = r(#®), VxU (5, )} = S{VeU (5, 6(5)), 4 (6 () V2 U 5, ¢ ()))
—3,U(s,0()) — (ViU (5,9 (5)), $(s))
d -
= 7 U(s,(b(s)).

T ds
Let us now integrate both sides on [z, T]. Using the terminal condition U(T,x) <
h(x), we have

—/tT(<¢§(s) —r(¢()). VaU (s, 9(5)))

1 - _ -
+ E(VXU(S, q‘)(s)), q(q‘)(s))VxU(s, d)(s)))) ds > —h(qb(T)) +U(t, x).
Thus, the right hand side of (4.11) is bounded from below by

. 1 =
¢€AC([Z’;flgm)’(b(t):x[StT((ﬁ) +h(¢p(D)]+ U, x).

Thus, since by definition G(t, x) = inf¢eAC([z,T];R'"),qb(z):x[Stlr (@) + h(ep(T))] we
can conclude that

liminf —e log Q¢ (¢, x; it) > G(t,x) + U(t, x).
e—0
This concludes the proof. g

4.2 Importance Sampling for Regime 2

Let us now study the construction of efficient importance samplings for Regime 2.
The situation here is more subtle than it is for Regime 1. This is also seen from
the large deviations principle, Theorem 3.6. The key difference between the LDP for
Regimes 1 and 2 is that E%l o depends on (z1, z2), while L)lc did not. This means that
relations between the elements of a viable pair are more complex, and in particular
that the joint distribution of the control (z1, z2) and fast variable y is important. Thus,
in contrast to Regime 1 where the action functional can be written down explicitly, in
the case of Regime 2 the formula of the action functional is in terms of value function
to a variational problem.

This implicit characterization partially carries over to the importance sampling.
The optimal control is again in terms of a corresponding cell problem as it was for
Regime 1 (recall the cell problem (2.1) for Regime 1). The difference here is that the
cell problem.is. defined implicitly rather than explicitly. As we discuss in Sect. 5, this
is related to the homogenization theory of HIB equations.
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In what follows, the subscript y is to emphasize the dependence on y (see (1.3)).
Define

. 1 T 1 T T
H,(x,y,p.q.P,Q,R)= inf |-oc’ :P+y-(ur| +n1,):0
M],MzEZ 2 2

+ynio’ iR+ (yb+c+ouy, p)

1 1
+(yf + g+ niur + vuz, q) + Enulnz + Elluzllz]

1 1
= EO’O’T : P+y§(m{+m{) 10

+yniol 1R+ (yb+c, p)

1 2 1 2
+vf+ea) —slo"prrial = 5lw el
4.12)
The infimum in (4.12) is attained for
U= —aT(x, y)p— tlT(x, y)g and up= —rzT(x, y)q.- 4.13)

The control u = (u1, uz) motivates the asymptotically optimal change of measure in
Theorem 4.8. Let us now define the associated HIB equation of interest together with
the associated cell problem. We start with the cell problem. For each fixed (x, p)
consider the unique value I-_Iy (x, p) such that there is a periodic solution & to the cell
problem

Hy(x,y, p, Vy&,.0,V2,,0) = H,(x, p). (4.14)

The unknown in (4.14) is the pair (§,, I:Iy). As it can be obtained by Theorem I1.2
in [2], &, is the unique (up to an additive constant) periodic solution to (4.14) such
that &, € C%(R—™). Moreover, ﬁy (x, p) is continuous in x and concave in p (see
Propositions 11 and 12 in [1]).

Consider then the HIB equation (4.4) with H(x, p) replaced by I-_Iy (x, p). Under
the standing assumptions, this HIB equation has a unique viscosity solution which
we denote by G2(s, x). Actually, under mild conditions the value function of the
variational problem (4.1) is this unique viscosity solution. This can be derived as in
[1] and it will be recalled in Sect. 5.

In accordance to what we did for Regime 1, we consider a classical subsolution to
that HIB equation, which we denote by Us (s, x), where the Hamiltonian is I-_IV (x, p).
Notice that &, depends on the triple (x, y, p) with (x, p) seen as parameters. In the
computations p will be substituted by the gradient of the subsolution V, U (s, x). So,
in principle &, and U, (s, x) are coupled. This coupling is in line with the coupling
that appears in large deviations, see Theorem 3.6.

Similarly to what we did for Regime 1, we impose stronger regularity conditions.
This is done to ease exposition. In particular, the following condition guarantees the
feedback control used in importance sampling is uniformly bounded and that we can
apply.Itd.formula directly. without approximations. Thus, a number of technicalities
are circumvented.

@ Springer



150 Appl Math Optim (2013) 67:123-161

Condition 4.7 U has continuous derivatives up to order 1 in t and order 2 in x,
and the first and second derivatives in x are uniformly bounded. Similarly, &, is twice
continuous differentiable in (x, y, p), periodic with respect to y and all of the mixed
derivatives up to order 2 are bounded.

The following verification theorem is the analogous of Theorem 4.6 for Regime 2.

Theorem 4.8 Let {(X€(s), Y¢(s)), € > 0} be the solution to (1.1) for s € [ty, T] with
initial point (xo, yo) at time ty. Assume that we are considering Regime 2. Consider
a bounded and continuous function h : R™ + R and assume Conditions 2.1. Let
&y (x,y, p) be the unique (up to a constant) periodic solution to the cell problem
(4.14) and U, (s, x) be a classical subsolution according to Definition 4.1 and assume
Condition 4.7. Define the control u(s, x, y;2) = (u1(s, x, y;2), u2(s, x, y; 2)) by

i(s,x,y;2) = (=07 (x, )V Ua(s, x) — 1{ (x, y)Vy&, (x, ¥, Vi Ua(s, %)),
=17 (x, ))Vyy (x, 3, Vi Ua(s, 1))
Then the conclusion of Theorem 4.3 holds, i.e.

limi(r)lf—é In Q¢ (10, x0, yo; i (+; 2)) = Ga(to, x0) + Ua (1o, x0).
€—

Proo]i For notational convenience, we omit the subscripts 2 and y from G», Us, &y
and H,, . Also we write §(s, x, y) in place of §(x, y, V.U (s, x)) and (¢, x, y) in place
of (tp, x0, yo) for the initial point.

The first step is to write, as in Regime 1, that

—elog Q°(r,x, y; u(; 2))
. 1 r 2 r - e € 2 G
= 1n£E|:§/ Jves)| ds—/ (s, X (), Y€ (5); 2) " ds + 2 (X <T>>]s
ve t t
(4.15)

where ()A(, 1?) satisfies (4.8) with v(s) = (vi(s), v2(s)) and u(s, x, y;2) = (u; (s, x,
y:2),ua(s, x, y;2)).

The next step is to rewrite the right hand side of (4.15). Recall the definition of
the operator Li , from Definition 2.3 with z = (z1, z2). Denote by Eﬁ/ ff 2

[Ii , With % in place of y. We will write Eg/ j 2

variable z = 0.
Apply Itd formula to &(s, x, y). After some term rearrangement, we get

the operator

to denote the operator with the control

T
- / L;/ ;f(s)g(s, Re(s5), Y€(s)) ds
.o,

T
= / (Vy€, T1(v1 — i) + 12 (v2 — w2))(s, X (5), Y (5)) ds + Ri (€, v)
!

(4.16)
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where the random variable Rj (e, v) is
T
Ri(e,v) = a[s(x,x/a,t) —&(T, X<(T), Y<(T)) +/ 9E (5, X(9), Y(9)) ds]
t
T A A
+e/ 1o VeVyE(s, X4(s), Y (s)) ds
t
Tre . .
+8/ |:<§b+C+U(vl(s)_ﬁl)’vx§>(sixe(s)7 Yé(s))
t
+ %aaT : Vi (s, X (s), l?e(s))} ds
T A . T
+«/28/ (ViE, 0 dW(s))(s, XG(S),YE(S))+\/E/ (Vy&, 11 dW(s)
t t
+12dB(s))(s, X(5), Y€ (5)).

Under our assumptions, the random variable R (e, v) converges in L to zero as
€,8 | 0 uniformly in v € A.

Next, we apply Ité formula to U(z, x). Omitting some function arguments for
notational convenience and using the subsolution property for U, we get

h(XE(T)) = U(t,x) +/tT[—H(5(6(s), v, 0)
n <vx0, et - ﬁl)ﬂ (5, X€(s), P(s)) ds
+ %/tTaaT(f(f(s), V() : ViV U (s, X (s)) ds
+ﬁftT(VxU(s, X(s)),0(X(), Y(9))dW(s)).  (4.17)

Recalling the definition of H by (4.14) and adding and subtracting the term

ftT Eg/ f}’f@)g (s, Xe (s), ye (s)) ds, relation (4.17) becomes, after using (4.16),

T
h(X(T))—U(t,x) = (6/8—)/)/ (ViU (s, X(5)), b(X(5), Y(5)))ds
t
T
+/ (ViU (s, X€(5)), 0 (vi(s) —it1) (s, X(5), Y(5)) ) ds
T
+/ (Vy&. 1 (vi(s) — it1) + 12 (va(s) — ia2) ) dss
t
r > 2
(), Y(5); 2) | ds
*4 » I
- a8
Sl |_l}>
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! ! i Y€ € 2
+§/ (s, X< (), 79):2) | * s
t
+ Ri(e,v) + Ra(e,v) (4.18)

where R (e, v) was defined before and R;(e, v) is as follows
e (T _ .
Ry (e, v) = 3 / ool 1V V U(X(s), Y (s))ds
t
T —_ A A A
- ﬁf (ViU(s, X)), 0 (X(5), Y () dW (s))
t

0,X¢(s)

T
+/ [£/52 &(s, XE(s), PE(s)) — OXG()S(S,XG(S),YG(S))]ds
t

Under our assumptions, the random variable R (e, v) converges in L? to zero as
€, 6 | 0 uniformly in v € A. Recalling the definitions of the controls i1, itx we get

- T —_— A A A
h(X(T))-U(t,x) = (6/5—)/)/ (ViU (s, X(5)), b(X(5), Y<(5))) ds
t
T A A
—/ (i, 01 (5) — )5, X< (5), P (s)) ds
t
T A A
- / (ii2, v2(5) — )5, X< (5), P (s)) ds
t
1 T — e 23 2
—}—5/ ||u1(s,X (5),Y (s);2)|| ds
t

Lt i € € 2
+§f Jaa(s. R€ (). P€():2) | *ds
t
+ Ri(e,v) + Ra(e, v).

Writing for notational convenience u; (s) = i; (s, Xe (s), ye (s);2)fori =1,2, we
get after some term rearrangement

T
- [ Ua©l + Jao| 14
t
> 0.0 - n(& )+ [ T+ el

T T
— / (ﬁl(s), vl(s))ds — / <L_t2(s), vz(s))ds + R(e, v) (4.19)

where R(e, v) = R1(e v) + Ra(e,v) + (¢/8 — y)ft (VU (s, Xf(s)) b(Xf(s)
e (¢,v) converge in L? to zero as €, | 0,
es in L2 to zero uniformly in v € A.
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Inserting (4.19) into (4.15) gives us

- . l r 1 Y y
—€ln Q°(r.x; 1) = ,}E,EEf,x,y[E / () = a(s. X0, 7 () ds

+h(XUTNT)) + U(t, x) + R(e, v):|.

Set v(s) = v(s) — u(s, X(s), ?(s)). Since v € A, the representation formula (3.3)
implies that

T
EB[ [5)]* ds +h(ff(T>)} = _elOgEeXp{_éh(Xe(T))}'
t

Recalling that R(e, v) converges in L? to zero uniformly in v € A as €,8 | 0 and
using statement (ii) of Theorem 3.3 we get

1 (7 .
1iggf—elog 0¢(t,x; 1) > 1iggf3££E[§/t ||17(s)||2ds +h(X(T)) + Ree, v)i|
+U(t, x)
1 _
> 1imi(r)1f—e1ogEexp{——h(X€(T))} +U(t,x)
€— €

=G, x)+ U, x). (4.20)
This concludes the proof of the theorem. g

We conclude this subsection with the following remark. This remark relaxes the
requirement of a solution pair (§,, (x, y, p), I:Iy (x, p)) to the cell problem (4.14) to
a subsolution pair. This can be useful in problems where solving the cell problem is
difficult even numerically.

Remark 4.9 In the proof of the theorem, the definition of the cell problem (4.14) was
only used in (4.18). However, it is easy to see that the inequality in (4.18) would
be true if instead of the solution pair to the cell problem, a subsolution pair was
used, i.e. a pair (&, (x,y, p), Hy (x, p)) such that H,(x, y, p, Vy&,,0,V;§,,0) >
I-_Iy (x, p) forall y € Y and (x, p) € R™ x R™. So, one can seek for subsolution pairs
&y (x,y, ), I-_Iy (x, p)) to (4.14) such that &, (x, y, p) is periodic in y and I-_Iy (x, p)
is concave in p.

4.3 Importance Sampling for Regime 3

Finally, we study the construction of efficient importance samplings for Regime 3.
The procedure here is similar to that of Regime 2. This is to be expected, since
Regime 3 is a limiting case of Regime 2 obtained by setting y = 0. Therefore,
we shall only present the result omitting the proof, which follows as the proof of
Theorem 4.8 for Regime 2. The statement for the existence and regularity of a pair
(&o(x, v, p), Ho(x, v, p)) satisfying (4.14) with y = 0 is given in Sect. 5.
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Theorem 4.10 Let {(X€(s), Y(s)), € > 0} be the solution to (1.1) for s € [ty, T]
with initial point (xg, yo) at time ty. Consider a bounded and continuous function h :
R™ > R and assume Conditions 2.1. Let (£y(x, y, p), Ho(x, p)) be a pair satisfying
the cell problem (4.14) with y = 0 and Us(s, x) be a classical subsolution according
to Definition 4.1 with Hamiltonian Hy(x, p) and assume Condition 4.7 with y = 0.
Define the control u(s, x,y; 3) = (u1(s, x, y; 3), ua(s, x, y; 3)) by

(s, x,y:3) = (=0 (x, )V, Us(s, x) — 7] (x,y)Vy&o(x. y. Vo Us(s, x)),
—15 (x,y)Vy&o(x. y, Vi U3 (s, x)))
Then the conclusion of Theorem 4.3 holds, i.e.

limi(r)lf—e In Q¢ (t0, x0, yo; i (-; 3)) = G3(to, x0) + Us (to, x0).
€—>

Notice here that even though in the statement for the large deviations for Regime 3
(Theorem 3.3), we require that g(x,y) = g(y) and 7;(x,y) = 7;(y), in the state-
ment of the related importance sampling lower bound we do not require that as-
sumption. The reason is that in the proof of the importance sampling bound only the
Laplace principle lower bound is used (compare with (4.20)) and that holds with the
x-dependence as well; see the second statement of Theorem 3.3.

5 Connection with Homogenization of Hamilton-Jacobi-Bellman Equations

It is evident from the calculations in Sect. 4 that there is an implied relation of im-
portance sampling for multiscale problems and homogenization of a related class of
HIJB equations. In this section we aim to make this connection clear. We only outline
the results that are relevant to the importance sampling results. We refer the interested
reader to the literature of homogenization for Hamilton-Jacobi-Bellman equations for
more detailed discussions, e.g. [1, 2, 9, 17, 21, 27].

Let us define the function

1 €
0 (1, x,y) = By y y[em "X D]

where (X€, Y€) is the strong solution to the uncontrolled process (1.1) with initial
point (X€(¢), Y€(¢)) = (x, y). A straightforward computation shows that the function

G*(t,x,y) = —elnb(t, x, y)
solves the Hamilton-Jacobi-Bellman equation

V.G VZGE
}8 ,erGe, y8

8,G6+H€/5(x,y,VxGe, ,VxVyGE> =0
G(T,x,y) =h(x)

where the Hamiltonian He/s.is defined as in (4.12) with €/ in place of y. Under
Conditions 2.1 and 2.2 we have the following.
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e In the case of Regime 1, we have that G¢(¢, x, y) converges uniformly in compact
subsets of [0, T] x R™ x R?™ to the unique bounded and continuous viscosity
solution of (4.4) with effective Hamiltonian given by (4.6). We refer the reader to
[1, 9] for details.

e In the case of Regime 2 the effective equation has again the form (4.4) but the
effective Hamiltonian is given by the unique constant P_Iy such that the periodic
cell problem (4.14) has a unique (up to an additive constant) periodic solution
&) € C%(R4~™) (see Theorem IL.2 in [2]). Under our assumptions, the effective
Hamiltonian Hy (x, p) is continuous in x and concave in p (see Propositions 11
and 12 in [1]).

e In the case of Regime 3 the effective equation has again the form (4.4) but the
effective Hamiltonian is given by the unique constant Hy such that the periodic
cell problem (4.14) with y = 0 has a Lipschitz continuous periodic solution &
(see [1, 4]). Again, under our assumptions, the effective Hamiltonian Ho(x, p) is
continuous in x and concave in p (see Propositions 3 in [1]).

In regards to how these general results apply to importance sampling for multiple
scale problems, we have the following remark.

Remark 5.1 In the context of importance sampling, we observe two things:

(i) the subsolutions that we are considering are subsolutions to the corresponding
limiting HIB equations, and

(ii) the cell problem arising in homogenization of HJB equations enters in the for-
mulation of the importance sampling scheme in each regime.

These imply that in Monte Carlo simulation for multiscale problems both the local
information described by the corresponding cell problem and the homogenized infor-
mation that is described by the solution to the HIB equation, enter the asymptotically
optimal change of measure. As it is demonstrated in the numerical simulations pre-
sented in [13], neglecting the local information and basing the simulation only on
the homogenized information can lead to estimators that perform poorly in the small
noise regime.

6 Examples

In this section we present some simple examples from the existing literature to illus-
trate how our calculations look like. We consider two examples. The first one is the
first order Langevin equation. As we said in the introduction this model can be used
to model rough energy landscapes motivated by applications in chemistry; see also
[14, 26, 29, 32, 35]. This model was extensively discussed in [13, 14] and the theory
was also demonstrated by simulation results. We recall the formulas here for com-
pleteness for this particularly important example. The second example is related to
short time asymptotics for processes that depend on another fast mean reverting pro-
cess. Models of this nature appear in mathematical finance in the context of fast mean
reverting stochastic volatility models, e.g., [18]. Assuming that we want to estimate

6(e) = Ee "X M)[x¢ (0) = x), Y (0) = yo]
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for a given function & (x) and a given corresponding subsolution U, we also provide
the control that attains the desired bounds in Theorems 4.6, 4.8 and 4.10.

6.1 The First Order Langevin Equation

We consider the first order Langevin equation

X (s)
8

dX¢(s) = [—%VQ( >—Vv(xf(s))} dt + eN2DdW (s),

X€(0) = xo.

6.1)

To connect to the notation of the general model (1.1), this corresponds to
J,y)=bx,y)=—=VO(y), g, y)=clx,y) =—=VV(x),
Ti(x,y)=o0(x,y) =+v2D, n(x,y) =0.

Let us consider the case of Regime 1. The invariant distribution associated to the
operator L! is the Gibbs distribution (independent of x)

20
D dy.

1 .
M(dy)Z—e_%dy, LZ/ e
L Y

Moreover, Condition 2.2 is trivially satisfied. In dimension 1, an easy computation
shows that the action functional takes the following explicit form

Sor(¢) = {ii%[&(s)—r(ms))ﬁds if ¢ € AC([0, T]; R) and ¢(0) = xo

otherwise,
where
22V (x) 2D)2
r(x)=-— —, q=—7
LL LL
and

o0 A [J0))
L:/e_ D)dy, L:/eDdy.
y y

In addition, we can also compute the optimal change of measure in regards to
the importance sampling problem. Given a classical subsolution U, the importance
sampling control that appears in Theorem 4.6 takes the form

V2DA 0w . -
ii(s,x, y; 1) = (— . e%axU(s,xm).
3

The choice of the subsolution U according to Definition 4.1 depends on the terminal
cost.of interest h(x)..See also [13, 14] for some particular examples with specific
choices of subsolutions U (s, x).
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6.2 Short Time Asymptotics and Fast Mean Reversion

Next we consider a particular system of slow-fast motion, where the fast motion is a
fast mean reverting process. The slow motion appears due to the interest in short time
asymptotics. In particular, let us consider the system in 1 + 1 dimension

dX(s)=h(Y(s))ds+o(Y(s))dW(s),

1 1 (6.2)
dY(s) = 8—2(m —Y(s))ds + g[p dW(s)++/1— p2dB(s)]

where 0 < § <« 1 is the fast mean reversion parameter, m € R and p € [—1, 1]
is the correlation between the noise of the X and Y process. Assume that we
are interested in short time asymptotics. Then it is convenient to change time
s > €s with 0 < e <« 1. Writing the system under the new timescale, we obtain
{(X€(s),Y<(s)), s € [0, T]} as the unique strong solution to:

dX€(s) = eh(Y6 (s)) ds + \/EU(YG(S)) dW(s),

6.3)
dYe(s) = 56_2(’" —Y(s))ds + ?[de(s) +/1—p2dB(s)].

Both components (X, Y) take values in R. We supplement the system with initial
condition (X€(0), Y¢(0)) = (xo, yo). To connect to the notation of the general model
(1.1), this corresponds to

b(x,y)=0, c“(x,y) =€h(y), o(x,y)=0(y),

f,y)=m—y, g(x,y) =0, T1(x, y) = p, (x,y)=4/1—p2.

Of course, this system violates the periodicity assumption. However due to the
mean reverting feature of the fast motion, the conclusions hold in this case as well.

In the next subsections we see the form of the large deviations action functional
and of the control that defines the asymptotically optimal change of measure for all
three regimes.

6.2.1 The Case of Regime 1

A simple computation shows that the only possible solution to cell problem (2.1)
is the zero solution (this is because b = 0). Also, it is easy to see that the invariant
measure corresponding to the operator £! is independent of x and can be explicitly
computed, taking the form

1 2
u(dy)zﬁe O=m gy,

Then this implies that the formula for the action functional (Theorem 3.4) becomes

Sor(¢)={i£$"*5(s)lzds if ¢ € AC([0, T]; R) and ¢ (0) = xo

otherwise,
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where g = fyoz(y) w(dy). Given a classical subsolution U, the importance sam-
pling control that appears in Theorem 4.6 takes the form

i(s,x,y; 1) = (o (»)3U(s,x),0).

As in the previous example, the choice of the subsolution U according to Defini-
tion 4.1 depends on the terminal cost of interest /2(x).

6.2.2 The Case of Regime 2

The situation here is more complicated because the infimization problem that appears
in the definition of the local rate function, Theorem 3.3, does not necessarily have a
closed form solution as it had for Regime 1. However, due to the one-dimensionality
aspect of the problem we can still do some algebraic computations. A simple algebra
shows that the formula for the action functional (Theorem 3.3) becomes

Sor(®) = { J%rg Ly(¢s. ds)ds if ¢ € AC([0, T1; R) and ¢ (0) = xo

otherwise,

where
1
Lo f)= inf {—/\v(y)!zuv<dy>}.
veAf.’ﬂ 2 %

with

1 o y
1 (dy) = ze/ﬁ Ry m=242000Ndz gy, p /yefl 2y n=2)+2000)1dz

Ai’ﬁ:{v(.);y»R,ﬁ:/yo(y)v(y)m(dy)}-

Notice that the invariant measure ©(dy) and the control v decouple when p = 0.
In the general case p € [—1, 1], the equation for the related cell problem (4.14) takes
the form

1 1 -
ZE0)+ [yn =) —omeple,0) = 5 (6, 0)° = 30°0)p” = Hy ().

There is a unique pair (&), (y), I-_Iy (p)) satisfying this equation such that &, (y) €
Wlloc, see [2, 22]. Notice that for this model, the solution (&, (y), I-_Iy( p)) to the cell
problem is independent of the slow motion x. Obtaining closed form solutions to
such equations is difficult in principle, especially because we are interested in pairs
&y (), I-_Iy (p)). Numerical methods such as the ones developed in [10, 20] will be
useful here. Notice also.that by Remark 4.9 appropriate subsolution pairs suffice. We

plan to return to these issues in detail in a future work.
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Given sufficient smoothness such that Theorem 4.8 is applicable and a classical
subsolution U (depending on the choice of the terminal cost /(x)), the importance
sampling control that appears in Theorem 4.8 takes the form

(s, %, y:2) = (=0 (03U (s, x) — pdy&y (v, 8: U (s, %)),

- Maygy (v, 8:U (5. )))-

6.2.3 The Case of Regime 3

It turns out that we can make some explicit computations here. To simplify things we
will assume for brevity that p = 1. With these assumptions we get that 71(x,y) =1
and 72 (x, y) = 0. Assume thato € LY(Y) and that fy o(y)dy # 0. A straightforward
computation shows that the local rate function takes the form

. 1 2 B / p }
L3(x, B) =inf{ = oo a X L o oma X =1t
3(x. B) “J{z/yh’(y)’ ) fyomdy Ty vy fedy

This problem can be solved explicitly yielding

Sor (¢) = { ig |¢s|2(fy0(y) dy)~2ds if ¢ € AC([0, T]; R) and ¢ (0) = xo

otherwise.

The equation for the related cell problem (4.14) with y = O takes the particular
simple form

1 1 _
~0(PE) — 507 ()P’ ~ 5(55@))2 = Ho(p).

This has the form of first order Bellman equation with quadratic Hamiltonian. Such
equations have been studied in the literature and our assumptions guarantee that there
are pairs (&, Hp) such that &o is a continuous viscosity solution when Hy > I-_I(;F where
1‘-_16k is a critical value. We refer the interested reader to [23] for an extensive discussion
on this.

If o (y) is periodic in y, say with period A =1, then ) =T = [0, 1] and we look
for a periodic solution &y(y). It turns out that the Bellman equation can then be solved
explicitly yielding

1 y
Eo(y,P)=P(y/0 U(w)dw—/o G(w)dw),
. 1 1 2
Ho(p)=—5p2</ U(y)dy> -
0

Thus, indeed (Eo(y,_ P, Hy( p)) satisfy the assumptions of Theorem 4.10. Given a
classical subsolution U (depending on.the choice of the terminal cost /(x)), the im-
portance sampling control that appears in Theorem 4.10 takes the particularly simple
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form

i(s,x,y;3) = (—o (1) U(s, x) — dy&o(y, U(s, x)),0)

1
= <—|:/ o(w)dw]axU(s,x),0>.
0

7 Conclusions

In this paper we have developed the large deviations theory and a rigorous mathemat-
ical framework for the importance sampling theory for systems of slow-fast motion
like (1.1). All the possible cases of interaction of fast motion and intensity of the
noise are considered. The asymptotic performance of the proposed schemes are in
terms of appropriate subsolutions to related HIB equations and in terms of appro-
priate “cell problems”. Straightforward adaptation of importance sampling schemes
from standard diffusions without multiscale features lead to poor results in the mul-
tiscale setting. We have shown how the problem can be dealt with in the general
multidimensional setting for fully dependent systems of slow-fast motion, when the
fast motion is periodic.
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